人工智能、机器学习领域13个常见概念

2023-05-24 CoCode

01 人工智能

艾伦·图灵(Alan Turing)对人工智能的定义如下:

如果窗帘后面有一台机器,并且有人正在与之互动(无论以何种方式,例如音频或打字等),并且如果该人觉得他正在与另一个人互动,那么这台机器就是人工智能的。

这是定义AI的一种非常独特的方式。它并不直接针对智能的概念,而是专注于类人的行为。事实上,这一目标的范围甚至比单纯的智能更为广泛。从这个角度来看,AI并不意味着要建造一台可以立即解决任何问题的超智能机器,而是要建造一台能模仿人类行为的机器。

然而,仅仅制造模仿人类的机器听起来并不有趣。从现代角度来看,每当我们谈到AI时,指的是能够执行以下一项或多项任务的机器:理解人类语言,执行涉及复杂*纵的机械任务,在很短的时间内解决可能涉及大量数据的基于计算机的复杂问题,并以类人的方式回复答案,等等。

电影《2001:太空漫游》中描述的超级计算机HAL非常接近现代AI的观点。它是一台机器,能够处理各种来源的大量数据,并以极快的速度生成对其的见解和总结,并且能够以类人的交互方式(如语音对话)将这些结果传达给人类。

从类人行为的角度来看,人工智能有两个方面。一方面,机器是智能的并且能够与人类交流,但是没有任何运动功能。HAL就是这类人工智能的例子。另一方面,涉及与类人的运动能力的物理交互,这涉及机器人领域。

人工智能

02 机器学习

术语“机器学习”或简称ML(Machine Learning),是亚瑟·塞缪尔(Arthur Samuel)在1959年用机器解决跳棋游戏的背景下提出的。该术语指的是一种计算机程序,它可以学习产生一种行为,而这种行为不是由程序的作者明确编程实现的。相反,它能够显示出作者可能完全没有意识到的行为。

这种行为的学习基于三个因素:

  1. 程序消耗的数据;
  2. 量化当前行为和理想行为之间的误差或某种形式的距离的度量;
  3. 使用量化误差指导程序在后续事件中产生更好行为的反馈机制。

可以看出,第二个和第三个因素很快使这个概念变得抽象,并强调其深层的数学根源。机器学习理论中的方法对于构建人工智能**至关重要。

机器学习算法大致分为三种类型:

  1. 监督学习算法
  2. 无监督学习算法
  3. 强化学习算法。

让我们详细了解每种类型。

机器学习

03 监督学习

为简单起见,让我们将机器学习**看作一个黑盒,在给定一些输入时会产生些输出。如果我们已经有一个历史数据,该历史数据包含一组输入的一组输出,则基于这些数据的学习称为监督学习。

监督学习的一个经典示例是分类。假设我们已经测量了3种不同类型的花( Setosa山鸢尾、 Versicolor变色鸢尾、 Virginica弗吉尼亚鸢尾)的4种不同的属性(尊片长度、尊片宽度、花瓣长度和花瓣宽度)。

我们对每种花的25种不同示例进行了测量。然后,这些数据将用作训练数据,其中有可用于训练模型的输入(4个测量的属性)和相应的输出(花的类型)。然后以监督的方式训练合适的机器学习模型。一旦模型被训练好,就可以根据萼片和花瓣的尺寸对任何花(在三种已知类型之间)进行分类。

04 无监督学习

在无监督学习范式中,标记数据是不可用的。无监督学习的一个经典例子是“聚类”。考虑与前面小节中描述的相同示例,在该示例中,我们对三种类型的花的萼片和花瓣尺寸进行了测量。但是,在本例中,我们没有每组测量的花的确切名称。我们所拥有的只是一组测量值。此外,我们被告知这些测量值属于三种不同类型的花。

在这种情况下,可以使用无监督学习技术自动识别三组测量值(所属的)类簇。但是,由于标签未知,我们所能做的就是将每个类簇称为flower-type-1、flower-type-2和flower-type-3。如果给出一组新的测量值,我们可以找到它们最接近的类簇,并将它们归类为其中之一。

05 强化学习

强化学习是一种特殊的学习方法,需要与监督和无监督方法分开对待。强化学习涉及来自环境的反馈,因此它并不是完全无监督的,但是,它也没有一组可用于训练的标记样本,因此不能将其视为有监督的。在强化学习方法中,**不断地与环境进行交互以寻求产生期望的行为,并从环境中获取反馈。

强化学习

06 静态学习

划分机器学习方法的另一种方式是根据它们处理的数据类型进行分类。接收静态标记数据的**称为静态学习方法。处理随时间不断变化的数据的**称为动态方法。每种方法都可以是有监督的,也可以是无监督的,但是,强化学习方法始终是动态的。

静态学习是指对作为单个快照获取的数据进行学习,并且数据的属性随时间保持不变。一旦在数据上训练了模型(使用监督学习或无监督学习),就可以在将来的任何时间将训练后的模型应用于类似的数据,而且该模型仍然有效,并将按预期执行。典型的例子是不同动物的图像分类。

07 动态学习

这也称为基于时间序列的学习。这类问题中的数据对时间敏感,会随着时间不断变化。因此,模型训练不是一个静态的过程,而是需要不断地(或在每个合理的时间窗口之后)对模型进行训练,以保持有效。

此类问题的典型例子是天气预报或股票市场预测。一年前训练过的模型对于预测明天的天气或预测明天任何股票的**将完全无用。两种类型的根本区别在于状态的概念。在静态模型中,模型的状态是不变的,而在动态模型中,模型的状态是时间的函数,它在不断变化。

动态学习

08 维数

在处理各种数据集时,维数通常是一个令人困惑的概念。从物理角度看,维度是空间维度:长度、宽度和高度。(为了简单起见,我们不把时间当作第四维度来深入研究物理学。)在任何现实生活的场景中,我们遇到的都不超过这三个维度。

但是,当我们处理用于机器学习的数据时,通常有几十个、数百个甚至更多个维度。为了理解这些高维度,我们需要研究维度的基本性质。

空间维度的定义使得每个维度都与其他两个维度垂直或正交。这种正交性对于三维空间中的所有点都有唯一表示至关重要。如果维度不是互相正交的,则空间中的相同点可以具有多种表示形式,并且基于此的整个数学计算将失败。

例如,如果我们将三个坐标设置为长度、宽度和高度,并具有任意的**(**的精确位置仅会更改坐标值,但不会影响唯一性属性,因此只要它在整个计算过程中保持不变,任何**的选择都是可以的。)

坐标(0,0,0)标记**本身的位置。坐标(1,1,1)将标记一个点空间,该点空间在每个维度中均距**1个单位,并且是唯一的。没有其他坐标系可以表示空间中的相同位置。

现在,让我们将这个概念扩展到更高的维度。在数学上添加更多的维度相对容易,但是很难在空间上可视化它们。如果我们添加第四个维度,则它必须与之前的所有三个维度都正交。在这样的四维空间中,**的坐标为(0,0,0,0)。三维空间中的点(1,1,1)可以在四维空间中具有坐标(1,1,1,0)。

只要确保正交性,就可以保证坐标的唯一性。同样地,我们可以有任意数量的维度,所有的数学计算仍然成立。

考虑前面描述的鸢尾花数据示例。输入有4个特征:萼片和花瓣的长度和宽度。由于这4个特征相互**,所以它们可以看作是正交的。因此,当使用鸢尾花数据解决问题时,我们实际上是在处理四维输入空间。

维数

09 维数灾难

即使从数学的角度来看,增加任意数量的维度都是可以的,但是仍然存在一个问题。随着维度的增加,数据的密度呈指数下降。

例如,如果我们在训练数据中有1000个数据点,并且数据具有3个独有的特征。假设所有特征的值在1~10之间。所有这1000个数据点都位于一个大小为10×10×10的立方体中。因此,密度为1000/1000或每单位立方体1个样本。如果有5个独有的特征而不是3个,那么数据的密度很快就会下降到每单位5维立方体0.01个样本。

数据的密度很重要,因为数据的密度越高,找到一个好模型的可能性就越大,模型准确性的置信度就越高。如果密度很低,则使用该数据的训练模型的置信度就会很低。因此,尽管高维在数学上是可以接受的,但是人们需要注意维数,以便能够开发出具有高置信度的良好的机器学习模型。

10 奥卡姆剃刀原理

在开发和应用机器学习模型时,总是会遇到多种可能的解决方案和多种可能的方法来获得答案。很多时候,对于哪种解决方案或哪种方法比其他方法更好,没有任何理论指导。在这种情况下,奥卡姆剃刀原理的概念(有时也称为简约原则)可以有效地应用。该原理指出:

一个人不应该做出超过最低需求的假设,或者换句话说,当一个解决方案有多种选择时,最简单的方法就是**的。

这个原理不完全是一个定理,不能作为一个定量规则或方程来应用。但是,在现实生活中做出这样的决定时,它是一个强有力的有效的概念指南。

还需要注意的是,这条规则创建了一种折中的形式,一方面,我们拥有更多复杂性形式的信息,另一方面,我们却拥有更少的简单性形式的信息。人们不应该过于简单化问题,以致丢失一些核心信息。奥卡姆剃刀原理的另一个衍生方面是更简单的解决方案往往具有更多的泛化能力。

11 “没有免费的午餐”定理

在设计机器学习**时,需要注意的另一个有趣的概念来自Wolpert和Macready的**,其形式是“没有免费的午餐”定理或优化中的NFL定理。该定理实质上指出:

如果一个算法在某类问题上表现得更好,那么它会以在其他类别的问题上性能下降的形式付出代价。换句话说,对于所有类型的问题,你都无法拥有单一**的解决方案。

这个定理需要更多地作为指导原则而不是定律,因为在所有可能的问题类别中,一个设计良好的算法完全有可能胜过其他设计不太好的算法。但是,在实际情况下可以从这个定理推断出,我们不能对所有的问题都采用同一个解决方案,并期望它在所有的情况下都能很好地工作。

12 收益递减规律

收益递减规律通常出现在经济和商业场景中。它指出,随着现有员工人数的增加,增加更多的员工来完成一项工作开始产生越来越少的收益。

从机器学习的角度来看,这一规律可以应用于特征工程。从给定的数据集中,人们只能提取一定数量的特征,在此之后,性能上的收益开始减少,付出的努力是不值得的。在某些方面,它与奥卡姆剃刀原理一致,并增加了更多的细节。

收益递减规律

13 专家**

在机器学习开始真正意义上的商业化之前,很少有其他**已经突破常规计算的边界。其中一个显著的应用是专家**。

艾伦·图灵的定义标志着机器智能被认可的时代的开始,人工智能领域也随之诞生。然而,在早期(一直到20世纪80年代),机器智能或机器学习领域仅限于所谓的专家**或基于知识的**。专家**领域的顶尖专家之一,Edward Feigenbaum博士,曾经这样定义专家**:

一种智能计算机程序,使用知识和推理过程来解决很难解决的以至于需要大量的人类专业知识才能解决的问题。

这种**能够替代某些领域的专家。这些机器经过编程,用于执行基于复杂逻辑运算的复杂启发式任务。

尽管这些**能够取代特定领域的专家,但如果我们将其与人类智能进行比较,就会发现它们并不是真正意义上的“智能”**。原因是**被“硬编码”为仅解决特定类型的问题,如果需要解决一个更简单但完全不同的问题,这些**将很快变得完全无用。

尽管如此,这些**还是非常流行和成功的,特别是在需要重复但高度精确的性能的领域,例如诊断、检查、监测和控制。

关于作者:Ameet V.Joshi,博士,目前是微软的一名数据科学经理。他于2006年在密歇根州立大学获得博士学位。他拥有超过15年的机器学习算法开发方面的经验,涉及各种不同的工业领域,包括管道检查、家庭能源分解、微软Cortana智能和CRM中的商务智能。

本文摘编自《机器学习与人工智能:从理论到实践》,经出版方授权发布。

文章来自:https://blog.csdn.net/Piotr_ce/article/details/122489942?spm=1000.2115.3001.5928


相关股票: 机器人
相关概念: 人工智能 机器人

崛起的中科系,被改变的我国芯片产业格局

当前,以芯片为代表的信创产业逐步成为国家科技竞争力的重要标志。在国产CPU产业强势崛起的过程中,你首先想到的会是哪几企业?答案有很多,但“中科系”的提及率绝对很高。作为国家战略科技力量,“中科系”旗下

芯片战场丨芯片领域三箭齐发 英特尔跑步突围

21世纪经济报道记者倪雨晴 圣何塞报道在硅谷源泉之一的圣何塞,英特尔CEO帕特·基辛格(Pat Gelsinger)正在带领英特尔加速奔跑。当地时间9月19日,2023英特尔on技术创新大会于美国加利

OPPO重启芯片业务?国产芯片或需告别“单打独斗”

财联社9月19日讯(记者 唐植潇)近日有消息称,OPPO将会重启芯片业务,并且“有部分员工已经回流,加入到了车载业务之中”。记者就此事向OPPO方面进行核实,对方表示“不予置评”。特百惠(我国)数字与

600亿颗芯片!我国巨头正式宣布,美媒:**也没料到制裁这么快

我国芯片市场与美国依赖我国的集成电路市场一直以来都是一个巨大的市场,拥有庞大的需求和巨大的增长潜力。我国的电子消费市场一直在迅速增长,包括智能手机、电视、电脑和各种智能设备等,这些设备都需要高性能的芯

最新手机芯片天梯图:A17、华为麒麟9000S,排在什么位置?

近日,最火的两颗芯片分别是苹果的3nm芯片A17 Pro,虽然很多人吐槽它较上一代提升不明显,但论性能,可以碾压任何安卓芯片,甚至是领先2代的。另外一款芯片,则是华为麒麟9000S,当然,这颗芯片工艺

韩国芯片连续13个月暴跌,尹锡悦指责我国不采购,外媒:自食其果

据韩国媒体称,韩国的半导体出口额已经连续暴跌13个月了,比去年同比下降了28%左右。韩国政府急的焦头烂额。尹锡悦政府竟直接甩锅我国,话里话外都是指责,他认为韩国半导体卖不出竟是我国的原因,我国应该帮助

我国突破芯片瓶颈将影响全球秩序?美国很担心,指出我国关键弱点

我国在芯片半导体领域一直深受美国的**,通过贸易制裁的方式阻止高端芯片进入我国市场。这样的举措一度造成我国芯片领域发展断档,不过随着我国科技企业近几年的突破,目前我国已经在芯片制造方面取得了重大的成果

没有他,我国芯片发展至少要**十年?

前几天,华为一声不响的上线了mate60系列,带着麒麟芯片9000s强势回归,吸引了全世界的目光。而华为麒麟芯片**背后,我们不该忘记这位老人—张汝京。我国半导体之父,为回**造芯片,被开除**户籍,

陈清泰:未来汽车颠覆传统,50%以上的零部件体系面临重构

【有车以后 资讯】“未来汽车对传统汽车的颠覆性,使传统零部件体系的50%以上都面临重构。”12月16日,在全球智能汽车产业峰会(GIV2022)上,我国电动汽车百人会理事长陈清泰指出,智能汽车的价值链

「姿势」一辆汽车由多少个零件组成?保证你说不清...

投稿点这里汽车有多少个零件?其实这个问题并没有一个十分确切的标准答案...据估计,一般轿车约由1万多个不可拆解的**零部件组装而成。结构极其复杂的特制汽车,如F1赛车等,其**零部件的数量可达到2万个

全球最大的10家汽车零部件供应商 都是世界500强 无我国企业

【卡车之家 原创】美国《财富》**每年发布的世界500强排行榜,是以营业收入数据对全球企业作出排名的榜单。2017年“世界500强”榜单中,汽车制造商和零部件厂商共占据33席(除去大型工程车辆企业),

汽车零部件企业哪家强?除了博世**还有这些名字你一定耳熟能详

文:懂车帝原创 李德喆[懂车帝原创 行业]9月18日,由《我国汽车报》主办,罗兰贝格协办的2019汽车零部件“双百强”企业发布会在江苏南京举行。在两份榜单中,博世、**、电装位列2019全球汽车零部件

汽车零部件行业现状及产业链

行业现状(Reference:产业运行 | 2021年汽车工业经济运行情况)中汽协预测:2022年我国汽车销量达到2700万辆,新能源销量超过550万辆(Reference:乘用车市场信息联席会)以乘

全球十大汽车零部件供应商,核心技术都被他们垄断,自主遗憾缺席

提到电影,我们会想到张艺谋、冯小刚,而很少会想到幕后的制作人;提起流行乐,我们会想到周杰伦、萧敬腾,而很少会想到背后的作词人。台前台后,一幕之别,知名度往往相差甚远。车界又何尝不是如此,知名车企我们都

高清汽车各零部件构造图,看完你就是汽车专家!

2023世界移动通信大会即将举行,大批中企强势回归!

来源:环球时报 【环球时报记者 倪浩 陶震 环球时报驻德国特约记者 青木】经过3年疫情后,全球最具影响力的通信展今年有望再现往日盛况。2月27日至3月2日,由全球移动通信**协会(GSMA)主办的20

太空新赛道:6G时代的卫星通信,究竟是什么?

近日华为、苹果争相推出手机卫星通信功能,成为一大亮点,不少手机厂商也将目光投到卫星通信。放眼未来,手机直连卫星的卫星通信服务将是大势所趋,也是6G时代的重要标志。华为以“北斗三号”为依托,率先把“卫星

光纤#光纤通信

国内企业在光通信产品的参数测试过程中,通常使用国外的先进测试设备。然而,这些测试仪器之间往往是孤立存在的,需要手动调试仪器并通过旋钮、按钮和人眼观察波形或数据。这不仅*作繁琐易出错,而且测试效率低下。

龙头20cm涨停,7天股价翻倍!一文看懂卫星通信前世今生及产业链

卫星通信概念股华力创通今日再度强势拉升,截至发稿,该股股价20cm涨停,7个交易日累计涨幅近113%,现报23.52元续刷阶段新高,总市值155.9亿元。消息上,有媒体从供应链获悉,Mate 60 P

工信部:目前我国尚不具备实现网络层面的移动通信号码归属地变更的条件

针对网友提出的“电话号码归属地更改”建议,工信部近日给出了官方回复。此前,有网友在人民网留言板向工信部留言称,“现在电话都是实名制,电话号绑定的***及一些主流的软件较多,更换号码后造成一系列问题

AD
更多相关文章