激光技术基础知识
✴ 激光
英文名 LASER,其全称是Light Amplification by Stimulated Emission of Radiation。
字面意思就是“光受激辐射放大”。
其为人工光源,具有与自然光不同的特性,可直线传播到很远,并且可**在较小范围等。
✴ 激光与自然光的区别
- 单色性
自然光包含从紫外线到红外线等多种波长的光。其波长不一。
自然光
激光为单一波长的光,其特性称之为单色性。单色性的优点在于可提高光学设计的灵活性。
激光
光的折射率因波长不同而产生变化。
自然光穿过镜头时,会因内含不同种类的波长,而产生扩散现象。这种现象称为色差。
而激光为单一波长的光,只会朝相同的方向折射。
例如,**头的镜头需要具备可校正因颜色导致的失真的设计,但激光仅需考虑该波长即可,因此光束可长距离传送,实现小光斑聚光的精密设计。
- 指向性
指向性是指声音或光线在空间内前进时不易扩散的程度,指向性较高则表示扩散小。
自然光包含朝各种方向扩散的光,为提高指向性,需要靠复杂的光学**去除前进方向以外的光。
自然光
激光为指向性较高的光,让激光不扩散而直线前进,在光学设计上较为容易,可进行长距离传送等。
激光
- 相干性
相干性表示容易相互干扰的程度。如果将光考虑为波,波段越相近则相干性越高。
例如,水面上不同的波相互碰撞时,可能相互增强或相互抵消,与这一现象相同,越随机的波干扰程度越弱。
自然光
激光地位相、波长、方向一致,可维持较强的波,从而实现长距离传送。
激光波峰波谷一致
相干性较高的光,具有可长距离传送且不会扩散的特性,具备可通过镜头**成小光斑的优点,可将产生的光传送至别处,用作高密度光。
- 能量密度
激光具有优异的单色性、指向性、相干性,可**成非常小的光斑,形成高能量密度的光。
激光可缩小至自然光达不到的绕射极限附近。
(绕射极限:物理上无法将光聚焦成小于光波长的极限)
通过将激光缩到更小,可将光强度(功率密度)提高至可用于切断金属的程度。
激光
✴ 激光振荡的原理
- 产生激光的原理
要产生激光,就需要称为激光媒质的原子或分子。
从外部对该激光媒质照射能量(激发光)让原子由低能量的激发态变换为高能量的激发态。
激发态是指原子内的电子从内侧向外侧外壳移动的状态。
原子状态
原子变换为激发态后,经过一段时间会恢复为基态(从激发态恢复为基态的时间称为荧光寿命)。此时会将接收到的能量以光的形态辐射出去,恢复为基态(自发辐射)。
这种辐射出的光具有特定的波长。
激光的产生原理是让原子变换为激发态,然后提取产生的光加以利用。
原子状态
- 放大激光的原理
变换为基态后一定时间的原子,会因自发辐射而辐射出光,并恢复为基态。
但激发光越强,激发态的原子数量就会增加,自发辐射光也会随之增加,从而产生受激辐射现象。
受激辐射是向受激原子入射自发辐射或受激辐射的光后,该光提供受激原子能量,让光成为相应强度的现象。受激辐射后,激发原子恢复为基态。激光的放大正是利用这种受激辐射,激发态的原子数量越多,受激辐射就会连续产生,从而可使光急速放大,并提取为激光。
✴ 激光器的构造
工业用激光器大致分为 4 种
- 半导体激光: 以具有活性层(发光层)构造的半导体为媒质的激光器。
- 气体激光: 广泛使用采 CO2 气体为媒质的 CO2 激光。
- 固体激光: 一般为 YAG 激光和 YVO4 激光,激光媒质采用 YAG、YVO4 结晶。
- 光纤激光: 以光纤为媒质。
- 半导体激光
重叠材质不同的半导体结晶构成活性层(发光层),从而产生光。
让光在构成两端的一对镜面间往返从而放大,最终产生激光。
半导体激光
- 气体激光
CO2 激光是以 CO2 气体为媒质的激光。
在填充有 CO2 气体的管内,配置电极板,以产生放电。电极板连接外部电源,使其可投入高频率电力作为激发源。因电极间放电而在气体中产生等离子体,CO2 分子会变换为激发态,该数量增加后开始受激辐射。此外,为了让光往返而产生振荡,相对设置一对镜面,则构成了谐振器。光会在全反射镜和输出镜之间往返,放大后输出为激光。
CO2 激光
- 固体激光
侧面抽运方式 YAG 激光是以 YAG 结晶为激光媒质的一种固体激光。
YAG 是指(Yttrium Aluminum Garnet)的结晶,并添加 Nd(Neodymium、钕)。
激光器的构成是在与 YAG 结晶的轴平行的两侧配置激发用 LD。使用一对镜面构成谐振器,在两者之间配置 Q 开关。振荡波长为 1064 nm。
侧面抽运方式是一种投入激发光的面积较大,可提高投入能量并容易获得高功率输出的构成。
脉冲宽度较长,为 100 ns 至数 ms,可产生脉冲能量较大的脉冲,用于对金属的刻印、切断、雕刻、**。
YAG 激光、侧面抽运方式
侧面抽运方式 YVO4 激光是以 YVO4 结晶为激光媒质的一种固体激光。
YVO4 是指钒酸钇结晶,与 YAG 同样添加有 Nd(钕)。采用从 YVO4结晶端面单侧照射激发光的方式,以一对镜面构成揩振器,并在镜面间配置结晶和 Q 开关。振荡波长与 Nd:YAG 激光相同,为 1064 nm。放大率较高,可使用较小的结晶,激光器长比 YAG 激光短。因此,光可在更短时间内反复射入结晶,使光强度急剧增加。与 YAG 相比,具有效率更高、峰值更高且脉冲更短的特点。此外,结晶中心部的放大率较大,产生的光为单模光 *,可输出高品质的激光。
YVO4 激光、侧面抽运方式
- 光纤激光
光纤激光使用光纤为媒质,是长距离通信的中断放大技术发展为高功率输出激光的产物。光纤由中心传输光的核心和以同心圆状包覆核心的金属包层构成。光纤激光以该核心为激光媒质放大光。因此核心中添加有 Yb(Ytteribum、镱)。
光纤激光的构成一般是通过激光二级管(Seed LD)产生的称之为种子光源(Seed Light)的脉冲光,然后通过 2 个以上的光纤放大器进行放大。激发用 LD 配备多个单管发射器(发光层为 1 个)LD。各LD 为低功率输出,因此具有热负荷较小的优点,实现了长寿命。此外,该 LD 数量越多,越可实现高功率输出的激光。光纤激光振荡效率较高,与固体激光和气体激光相比,具有功率消耗较低的特点。
放大用光纤(前置放大器、主要放大器)为 3 层构造,包括核心和 2层金属包层。激发光进入内侧的金属包层(内层包覆)和添加有 Yb的核心内,使核心内部的原子变换为激发态。激光被封闭于核心内前进,再通过激发原子放大,在媒质内越前进,强度越强。与固体激光或气体激光不同,光朝一个方向前进,不会往返。
放大用光纤构造
✴ 关于脉冲特性和对工件的影响
- YVO4 和光纤激光的差异
YVO4 激光和光纤激光的最大差异在于峰值功率和脉冲宽度。
峰值功率代表光强度,脉冲宽度代表光的持续时间。YVO4 具有容易产生高峰值、短脉冲光的特点,光纤具有容易产生低峰值、长脉冲光的特点。激光照射到材料时,加工结果会因脉冲的差异而产生较大变化。
YVO4 和光纤激光的脉冲
- 对材料的影响
YVO4 激光的脉冲会对材料短时间照射高强度的光,因此表面层较浅的区域会急速升温,然后立即**。照射部分在沸腾状态下被**为发泡状态,蒸发后形成较浅的刻印。在热量传递前照射便会结束,因此对周围的热影响较小。
光纤激光的脉冲,则是长时间照射低强度的光。材料温度缓慢上升,长时间维持液体或蒸发的状态。因此,光纤激光适合刻入量变大、或金属承受大量热量而氧化需要变黑的黑色刻印。
补充:
关于激光器,基恩士独创了 S-MOPA 激光器,
*Solid-state Master Oscillator Power Amplifier:直接将 YVO4 激光器的高品质光束,结合光纤激光中所使用的放大器技术,实现高功率输出化。光源 LD(激光二级管)采用散热性较高的单管发射器,实现长寿命化。
S-MOPA 的特点在于由 2 个阶段构成,首先通过 YVO4 激光器(主激光器)产生脉冲,然后通过 YVO4 的放大器将该脉冲放大。因此可维持主激光器所产生的高峰值、高品质脉冲,同时进行放大。此外,采用具有光纤激光特点的单管发射器激发 LD,与固体激光的巴条发射器 LD(单个半导体芯片中具有多个发光面的 LD)相比,热密度较低,**负荷较小,虽为固体激光,却实现了长寿命。
当前,以芯片为代表的信创产业逐步成为国家科技竞争力的重要标志。在国产CPU产业强势崛起的过程中,你首先想到的会是哪几企业?答案有很多,但“中科系”的提及率绝对很高。作为国家战略科技力量,“中科系”旗下
21世纪经济报道记者倪雨晴 圣何塞报道在硅谷源泉之一的圣何塞,英特尔CEO帕特·基辛格(Pat Gelsinger)正在带领英特尔加速奔跑。当地时间9月19日,2023英特尔on技术创新大会于美国加利
财联社9月19日讯(记者 唐植潇)近日有消息称,OPPO将会重启芯片业务,并且“有部分员工已经回流,加入到了车载业务之中”。记者就此事向OPPO方面进行核实,对方表示“不予置评”。特百惠(我国)数字与
600亿颗芯片!我国巨头正式宣布,美媒:**也没料到制裁这么快
我国芯片市场与美国依赖我国的集成电路市场一直以来都是一个巨大的市场,拥有庞大的需求和巨大的增长潜力。我国的电子消费市场一直在迅速增长,包括智能手机、电视、电脑和各种智能设备等,这些设备都需要高性能的芯
最新手机芯片天梯图:A17、华为麒麟9000S,排在什么位置?
近日,最火的两颗芯片分别是苹果的3nm芯片A17 Pro,虽然很多人吐槽它较上一代提升不明显,但论性能,可以碾压任何安卓芯片,甚至是领先2代的。另外一款芯片,则是华为麒麟9000S,当然,这颗芯片工艺
韩国芯片连续13个月暴跌,尹锡悦指责我国不采购,外媒:自食其果
据韩国媒体称,韩国的半导体出口额已经连续暴跌13个月了,比去年同比下降了28%左右。韩国政府急的焦头烂额。尹锡悦政府竟直接甩锅我国,话里话外都是指责,他认为韩国半导体卖不出竟是我国的原因,我国应该帮助
我国突破芯片瓶颈将影响全球秩序?美国很担心,指出我国关键弱点
我国在芯片半导体领域一直深受美国的**,通过贸易制裁的方式阻止高端芯片进入我国市场。这样的举措一度造成我国芯片领域发展断档,不过随着我国科技企业近几年的突破,目前我国已经在芯片制造方面取得了重大的成果
前几天,华为一声不响的上线了mate60系列,带着麒麟芯片9000s强势回归,吸引了全世界的目光。而华为麒麟芯片**背后,我们不该忘记这位老人—张汝京。我国半导体之父,为回**造芯片,被开除**户籍,
【有车以后 资讯】“未来汽车对传统汽车的颠覆性,使传统零部件体系的50%以上都面临重构。”12月16日,在全球智能汽车产业峰会(GIV2022)上,我国电动汽车百人会理事长陈清泰指出,智能汽车的价值链
投稿点这里汽车有多少个零件?其实这个问题并没有一个十分确切的标准答案...据估计,一般轿车约由1万多个不可拆解的**零部件组装而成。结构极其复杂的特制汽车,如F1赛车等,其**零部件的数量可达到2万个
全球最大的10家汽车零部件供应商 都是世界500强 无我国企业
【卡车之家 原创】美国《财富》**每年发布的世界500强排行榜,是以营业收入数据对全球企业作出排名的榜单。2017年“世界500强”榜单中,汽车制造商和零部件厂商共占据33席(除去大型工程车辆企业),
汽车零部件企业哪家强?除了博世**还有这些名字你一定耳熟能详
文:懂车帝原创 李德喆[懂车帝原创 行业]9月18日,由《我国汽车报》主办,罗兰贝格协办的2019汽车零部件“双百强”企业发布会在江苏南京举行。在两份榜单中,博世、**、电装位列2019全球汽车零部件
行业现状(Reference:产业运行 | 2021年汽车工业经济运行情况)中汽协预测:2022年我国汽车销量达到2700万辆,新能源销量超过550万辆(Reference:乘用车市场信息联席会)以乘
全球十大汽车零部件供应商,核心技术都被他们垄断,自主遗憾缺席
提到电影,我们会想到张艺谋、冯小刚,而很少会想到幕后的制作人;提起流行乐,我们会想到周杰伦、萧敬腾,而很少会想到背后的作词人。台前台后,一幕之别,知名度往往相差甚远。车界又何尝不是如此,知名车企我们都
来源:环球时报 【环球时报记者 倪浩 陶震 环球时报驻德国特约记者 青木】经过3年疫情后,全球最具影响力的通信展今年有望再现往日盛况。2月27日至3月2日,由全球移动通信**协会(GSMA)主办的20
近日华为、苹果争相推出手机卫星通信功能,成为一大亮点,不少手机厂商也将目光投到卫星通信。放眼未来,手机直连卫星的卫星通信服务将是大势所趋,也是6G时代的重要标志。华为以“北斗三号”为依托,率先把“卫星
国内企业在光通信产品的参数测试过程中,通常使用国外的先进测试设备。然而,这些测试仪器之间往往是孤立存在的,需要手动调试仪器并通过旋钮、按钮和人眼观察波形或数据。这不仅*作繁琐易出错,而且测试效率低下。
龙头20cm涨停,7天股价翻倍!一文看懂卫星通信前世今生及产业链
卫星通信概念股华力创通今日再度强势拉升,截至发稿,该股股价20cm涨停,7个交易日累计涨幅近113%,现报23.52元续刷阶段新高,总市值155.9亿元。消息上,有媒体从供应链获悉,Mate 60 P
工信部:目前我国尚不具备实现网络层面的移动通信号码归属地变更的条件
针对网友提出的“电话号码归属地更改”建议,工信部近日给出了官方回复。此前,有网友在人民网留言板向工信部留言称,“现在电话都是实名制,电话号绑定的***及一些主流的软件较多,更换号码后造成一系列问题