AI退潮,云计算兜底
AI行业又一次走到了十字路口。高昂的算力成本,利如纸薄的定制化商业模式,让AI公司集体深陷「负利润」的窘境。
企业往往寄希望于AI的能力,实现数字化跃迁,但作为新一代基础设施,AI行业本身也遭遇了新的难题:算法从研发到落地部署都需要巨额成本的投入,且大量的算法在应用落地上并不顺利。
如果从源头来看,云计算或许就是一剂良药,因为它能提供更低成本的算力和低门槛的开发服务,算法研发能力不足的企业还能直接在云上调用云厂商提供的算法,无需重复造轮子。
作为知名的市场分析机构,Gartner早早嗅到了这一趋势,他们从2020年就开始发布《云AI开发者服务关键能力报告》,在Gartner看来,AI与云的结合将愈加密切,AI云服务的能力也将成为AI产业的重要指标。
令人欣慰的是,我国企业已经压中了这一趋势,在今年的报告里,阿里语言AI技术高居全球第二,超越亚马逊AWS、微软等企业,正式进入世界第一梯队。
也正因如此,AI行业的前景依旧被广泛看好。Gartner报告提到,到2025年,70%的新应用程序将集成AI模型,而云AI服务能降低AI应用的开发门槛。这意味着云计算将成为阵痛期AI的最大变量。
给AI兜底的,为什么会是云?
AI商业化面前的两座大山:算力成本、项目成本
早在2017年,学术界和工业界在最具影响力的AI顶会CVPR上就对深度学习的问题展开了激烈的讨论。
讨论的焦点在于,深度学习的“大数据+大算力”范式需要巨大的成本支撑,这必然成为AI商业化的最大阻力。
“深度学习确实在语音、图像识别等数据中,比传统的AI方法更精准,这也是它成为引领第三波AI浪潮的关键,只不过深度学习是把**剑,它对燃料(算力、数据、能耗)的消耗,尤其是对算力的需求,远超传统方法。好比以前只吃两个馒头就能活下去,现在为了活得更好,却又受到食材的**,只能选择天天吃昂贵的和牛。虽然更有营养,但这显然不可持续。”多位AI专家告诉雷峰网。
由于AI的计算成本和能耗成本一直居高不下,在不少注重效益的研究者眼里,AI深度学习一度成了野蛮和**的代名词。
2012年,谷歌利用16000块芯片,让AI观看数百万段YouTube**来识别出猫,即便如此仍错误百出,还不如人类眼睛的一瞥高效。
2016年,AlphaGo击败围棋冠军李世石的人机大战中,AlphaGo每局棋需消耗约100万瓦的电能。相比之下,人脑消耗的功率仅20瓦,只有AlphaGo的5万分之一。
2018年之后,Transformer以及Bert等催生了预训练大模型的诞生,虽然让AI的性能变得更强,但所需的算力也大幅攀升。专门搭建一个这样的集群,对于大部分中小企业来说是难以承受的。
「算力」的供不应求,让其成为整个AI领域的稀缺资源。这也是不少学术界AI大牛纷纷涌入谷歌、微软、阿里等大型科技企业的主要原因,这类企业拥有丰富的业务场景,且有近乎取之不尽的算力资源。
AI所面临的问题还不仅于此,在商业落地过程中:企业不得不为每一个场景定制专属解决方案,这无形中增加了企业的开发成本,利润也因此被压缩。
早期的创业公司都迷信于“研发SDK,先标准化,再规模化,薄利多销,以量取胜”的商业设想。但现实很骨感,当AI公司们拿着SDK冲进行业里才发现,习惯了重型定制化贴身服务的B端客户们,需要的不是单个的开发包,也不具备集成SDK的能力,他们需要的是一套定制化的解决方案。一套SDK包打天下的梦想就此破灭。
SDK走天下梦碎后,AI公司们开始从轻变重,走高度定制化解决方案的路子。但充满个性化定制的项目制模式,极易让企业滑进亏损的漩涡——获客周期长、实施成本高、重人力交付……成本的高企导致利润微薄,甚至一不小心做得越多,亏得越多。
标准化美梦易碎,定制化困局难解,AI企业在商业落地上左右为难。
事实证明,由算力成本和项目成本制造的两条后腿,正在让AI步履蹒跚。
而要卸下这两条后腿,就要打破固有思路,走上一条新的道路。专家们向雷峰网分析道,顶尖高校和头部科技公司现在的探索方向就是:从基础理论层面,用创新算法让AI本身变得更精益、更聪明;在工程层面,则需要让AI研发的成本变得更低。
云计算,为什么是解开“AI成本困局”的良药
毫无疑问,AI的成本问题,算力是最大的症结之一,也是**的最大突破口。
通过算力集群的规模化,降低单位算力成本,是一条清晰的、具有一定可行性的道路。
在早期,AI所需算力并不高,CPU足以应对。但随着深度学习时代的到来,高质量的AI算法背后往往有惊人的数据量,此时训练所需的数据,规模已远超当年,更“强悍”的GPU逐渐登上历史舞台,成为AI算力的主流。
而当深度学习逐渐加深,模型的规模越来越大,单个GPU已无法满足算力。这时候,GPU并行的算力集群就显得尤为重要。大规模的算力集群,不仅能有效降低GPU采购成本,还能通过集群优势提升计算性能。
但此时新的问题又浮现了:有资源≠天然就用得好资源。如果企业没有合理高效的资源管理,GPU并行的算力集群自身属性再强,也无法自动锻造出优质AI大模型,更无从承载一个体验尚佳的AI应用。企业如今所面对的AI算力困境,包**众多琐碎痛点:
如果没有算力线性扩展能力,100台机器可能还比不上1台机器的性能,大量的时间就会消耗在非计算开销里。
如果没有提升资源利用率的能力,昂贵的GPU集群很容易利用率不足10%。
业务发展速度难以预测,项目来了需要快速投入,等线下购买到资源,很容易错过机会窗口。
GPU卡故障率高,企业要腾出手来处理IaaS运维等苦活、累活。
GPU几乎半年更新一代,如果随时更换成最新型号,成本居高不下,旧卡又会被闲置。
此时,云上开发AI这一方案被摆上桌面,云计算本身具有的弹性、共享性和互通性等特性正与这些痛点匹配。企业可以借助云计算随时随地按需灵活扩缩容,进而提升算力效率、降低AI研发成本,基础设施层的运维等问题也可以交由更专业的云厂商处理。
这让企业在AI领域模型越演进越复杂,算力需求越来越强的大背景下,可以扬长避短,充分利用市场上已有的技术红利去自我赋能,提升自身业务迭代效率。
以阿里云为代表的国内互联网云厂商,早已提前布局,并将这一系列技术对外服务。
阿里云张北数据中心,可容纳百万台服务器
值得一提的是,不同于AI独角兽们专注to B、to G,这批提供云AI服务的互联网云巨头,自身往往拥有海量的场景业务,可以使算力集群得到高饱和使用,分摊GPU的折旧成本,从而避免GPU集群算力闲置的问题。
这一做法,与谷歌的案例有异曲同工之妙。谷歌前CEO施密特曾谈到,谷歌搜索之所以能在竞争中占有优势,关键因素之一在于成本低。
“Google的运营成本只有微软和雅虎的几分之一,一次搜索服务的成本只有零点几美分。节省下来的钱,Google可以购买更多的服务器、提升运算性能,如此一来,在与竞争对手相同的单位**下,Google可用更多的硬件和算法,实现更好的搜索质量。”
真正一流的技术和科技公司,最先应该做的事是利用技术实现自身的降本增效,只有把生产要素的成本降下来,才能做到真正意义上的进入行业。
这种通过降低自身生产成本,提升计算资源的利用效率,把边际效应最大化,用最低的成本,走向规模化应用,这是科技产业落地发展的**路径。
除了算力问题,云AI服务也可以有效降低AI应用的开发门槛。以阿里为例,其机器学习平台PAI、达摩院研发的基础算法模型以及各种训练的加速框架等,从低门槛、全链路角度出发,高效满足了AI算法的开发需求。
云厂商扛起AI产业化重担
跳出技术层面,在商业层面,云计算也在帮助AI产业加速**。
目前国内AI产业主要有三条演进路径,从项目制出发:一条是最难获取高利润的多行业拓展模式,为了快速铺大摊子、做大规模,或者寻求业务突破而进入到金融、医疗、零售等数个领域,多线作战;一条是专注于一个垂直行业,把方案和服务做深做透,进而寻求在某一领域里实现平台化;还有一条是先聚焦于算法的打磨,做好算法的产品化,再依托云平台将算法对外服务,并用云平台的基础设施能力帮助企业研发算法。
国内AI产业演进的三条路径
而以阿里云为代表的头部互联网云厂商,在AI领域正朝着最良性的第三条道路迈进。
这种模式的好处在于,基于云平台的底座,不仅可以免去大部分本地化部署的枷锁,还能提供低成本的自研算法研发,快速为算法研发能力弱的企业服务,例如达摩院研发的视觉、语音、NLP等算法就在阿里云上对外服务。同时,云上的计算、存储、网络、机器学习平台等还能为具备算法研发能力的企业提供AI研发和落地的全链路支持。
这条将云与AI完美结合的路径,已经初有成效。以毫末智行为例,这家公司将算法训练任务放到阿里云上,利用后者的对象存储OSS和小文件存储CPFS,可实现海量数据冷热分层存储和高效的数据流通,基于弹性GPU实例在机器学习平台PAI上进行云上分布式模型训练,吞吐性能提升110%,模型成熟度在短时间内大幅提高。据介绍,这样的训练效率最高可提升70%,整体成本降低约20%。
过去十几年里,云计算凭借在算力成本和商业上的双重优势,以DNA**般的速度进入到各行各业,如今,其在通用计算领域中已被验证过的价值正在被**到AI领域,助力AI冲破落地瓶颈,实现万千普惠。
Gartner也毫不掩饰对这一趋势的预判,其最新的AI云服务报告指出,到2025年,人工智能软件市场规模将达到1348亿美元,而云AI服务是其中不可或缺的核心推力之一。
事实上,回顾半个多世纪里人工智能产业一路走来的潮起潮落,每一次低谷崛起都伴随着某一新变量带来的突破。如今,云计算正在成为眼下被寄予厚望的最大变量,这一次,将AI产业推向正轨的责任被使命般地交到了云厂商的肩上。雷峰网
当前,以芯片为代表的信创产业逐步成为国家科技竞争力的重要标志。在国产CPU产业强势崛起的过程中,你首先想到的会是哪几企业?答案有很多,但“中科系”的提及率绝对很高。作为国家战略科技力量,“中科系”旗下
21世纪经济报道记者倪雨晴 圣何塞报道在硅谷源泉之一的圣何塞,英特尔CEO帕特·基辛格(Pat Gelsinger)正在带领英特尔加速奔跑。当地时间9月19日,2023英特尔on技术创新大会于美国加利
财联社9月19日讯(记者 唐植潇)近日有消息称,OPPO将会重启芯片业务,并且“有部分员工已经回流,加入到了车载业务之中”。记者就此事向OPPO方面进行核实,对方表示“不予置评”。特百惠(我国)数字与
600亿颗芯片!我国巨头正式宣布,美媒:**也没料到制裁这么快
我国芯片市场与美国依赖我国的集成电路市场一直以来都是一个巨大的市场,拥有庞大的需求和巨大的增长潜力。我国的电子消费市场一直在迅速增长,包括智能手机、电视、电脑和各种智能设备等,这些设备都需要高性能的芯
最新手机芯片天梯图:A17、华为麒麟9000S,排在什么位置?
近日,最火的两颗芯片分别是苹果的3nm芯片A17 Pro,虽然很多人吐槽它较上一代提升不明显,但论性能,可以碾压任何安卓芯片,甚至是领先2代的。另外一款芯片,则是华为麒麟9000S,当然,这颗芯片工艺
韩国芯片连续13个月暴跌,尹锡悦指责我国不采购,外媒:自食其果
据韩国媒体称,韩国的半导体出口额已经连续暴跌13个月了,比去年同比下降了28%左右。韩国政府急的焦头烂额。尹锡悦政府竟直接甩锅我国,话里话外都是指责,他认为韩国半导体卖不出竟是我国的原因,我国应该帮助
我国突破芯片瓶颈将影响全球秩序?美国很担心,指出我国关键弱点
我国在芯片半导体领域一直深受美国的**,通过贸易制裁的方式阻止高端芯片进入我国市场。这样的举措一度造成我国芯片领域发展断档,不过随着我国科技企业近几年的突破,目前我国已经在芯片制造方面取得了重大的成果
前几天,华为一声不响的上线了mate60系列,带着麒麟芯片9000s强势回归,吸引了全世界的目光。而华为麒麟芯片**背后,我们不该忘记这位老人—张汝京。我国半导体之父,为回**造芯片,被开除**户籍,
【有车以后 资讯】“未来汽车对传统汽车的颠覆性,使传统零部件体系的50%以上都面临重构。”12月16日,在全球智能汽车产业峰会(GIV2022)上,我国电动汽车百人会理事长陈清泰指出,智能汽车的价值链
投稿点这里汽车有多少个零件?其实这个问题并没有一个十分确切的标准答案...据估计,一般轿车约由1万多个不可拆解的**零部件组装而成。结构极其复杂的特制汽车,如F1赛车等,其**零部件的数量可达到2万个
全球最大的10家汽车零部件供应商 都是世界500强 无我国企业
【卡车之家 原创】美国《财富》**每年发布的世界500强排行榜,是以营业收入数据对全球企业作出排名的榜单。2017年“世界500强”榜单中,汽车制造商和零部件厂商共占据33席(除去大型工程车辆企业),
汽车零部件企业哪家强?除了博世**还有这些名字你一定耳熟能详
文:懂车帝原创 李德喆[懂车帝原创 行业]9月18日,由《我国汽车报》主办,罗兰贝格协办的2019汽车零部件“双百强”企业发布会在江苏南京举行。在两份榜单中,博世、**、电装位列2019全球汽车零部件
行业现状(Reference:产业运行 | 2021年汽车工业经济运行情况)中汽协预测:2022年我国汽车销量达到2700万辆,新能源销量超过550万辆(Reference:乘用车市场信息联席会)以乘
全球十大汽车零部件供应商,核心技术都被他们垄断,自主遗憾缺席
提到电影,我们会想到张艺谋、冯小刚,而很少会想到幕后的制作人;提起流行乐,我们会想到周杰伦、萧敬腾,而很少会想到背后的作词人。台前台后,一幕之别,知名度往往相差甚远。车界又何尝不是如此,知名车企我们都
来源:环球时报 【环球时报记者 倪浩 陶震 环球时报驻德国特约记者 青木】经过3年疫情后,全球最具影响力的通信展今年有望再现往日盛况。2月27日至3月2日,由全球移动通信**协会(GSMA)主办的20
近日华为、苹果争相推出手机卫星通信功能,成为一大亮点,不少手机厂商也将目光投到卫星通信。放眼未来,手机直连卫星的卫星通信服务将是大势所趋,也是6G时代的重要标志。华为以“北斗三号”为依托,率先把“卫星
国内企业在光通信产品的参数测试过程中,通常使用国外的先进测试设备。然而,这些测试仪器之间往往是孤立存在的,需要手动调试仪器并通过旋钮、按钮和人眼观察波形或数据。这不仅*作繁琐易出错,而且测试效率低下。
龙头20cm涨停,7天股价翻倍!一文看懂卫星通信前世今生及产业链
卫星通信概念股华力创通今日再度强势拉升,截至发稿,该股股价20cm涨停,7个交易日累计涨幅近113%,现报23.52元续刷阶段新高,总市值155.9亿元。消息上,有媒体从供应链获悉,Mate 60 P
工信部:目前我国尚不具备实现网络层面的移动通信号码归属地变更的条件
针对网友提出的“电话号码归属地更改”建议,工信部近日给出了官方回复。此前,有网友在人民网留言板向工信部留言称,“现在电话都是实名制,电话号绑定的***及一些主流的软件较多,更换号码后造成一系列问题