简单三步,让你拥有如奥特曼一样的“激光**”

2023-08-17 北青网

2015 年是国际光和光基技术年(IYL2015),也是在这一年,***教科文组织执行委员会签署通过了将每年的 5 月 16 日设为“国际光日”的决定。之所以选择 5 月 16 日,是因为在 1960 年 5 月 16 日,美国物理学家梅曼制造出了人类历史上的第一束激光。

梅曼和红宝石激光器。图片来源:****

所以激光到底是什么?它又为啥这么重要呢?要回答这两个问题,我们就得好好了解一下梅曼这项工作的前因后果。

01

物体为什么会发光?

时间来到 1912 年,那时候的物理学家还在执着于构成这个世界的基础——原子,到底长啥模样。这一年,丹麦物理学家玻尔的三篇**发表,在这三篇**里,玻尔把量子理论运用在了卢瑟福的原子模型中,提出了著名的玻尔模型。

玻尔模型能解释当时其他模型所不能解释的现象,并且预测了一些之后通过实验能够证实的结果,因此之后得到科学界的普遍接受。

我们来看看这个玻尔模型,玻尔模型是一种行星模型,也就是说,带负电的电子就像行星一样围绕着带正电的原子核运动。

玻尔模型的精妙之处在于这些电子的轨道并不是随便选择的,而是只能选择一些确定的数值。

氢原子的玻尔模型。图片来源:****

最里面的电子轨道被称为基态,再外面一层的轨道就叫第一激发态,再外面就是第二激发态,以此类推。玻尔模型就可以很好地解释物体为啥会发光,我们可以注意到这些不同的轨道上的电子能量是不一样的,不妨把这些轨道“展平”,这样我们就得到了一些能级。

自发辐射能级。图片来源:****由于能量守恒的缘故,电子想从低能级跃迁到高能级去,就得从外界吸收对应的能量,这个过程我们就叫它受激吸收。同样的,电子从高能级掉到低能级去,肯定也会放出相应的能量,事实证明,这个过程会发出一个光子,也就是说,电子会发光,所以这个过程被称为自发辐射。我们生活中常见的普通光源的发光原理就是自发辐射。

02

让光“听话”

自发辐射产生的光存在一些问题:原子中的能级很多,这些光子有可能是第一能级自发辐射产生的,也有可能是第三能级自发辐射产生的……这就会导致这些光子的能量不一样,而单个光子的能量就决定了光的频率,也就是说,自发辐射产生的光频率是随机的。还有一点就是,自发辐射产生光子的时机,以及光子运动的方向也不受我们控制,这就会导致自发辐射产生的光,相位也是随机的。这里所讲的频率、相位都是光作为电磁波的一种属性,频率可以理解为光波振动的快慢,它也决定了我们看到光的颜色;相位可以理解为光波传递的位置。

光作为一种电磁波。图片来源:****总之,普通光源产生的光就像是一堆挤地铁的人,他们有老有少,有男有女,穿着不同颜色的衣服去坐地铁,而且走得还不一样快,有的已经上车了,有的却还在检票。这就导致普通光源虽然在生活照明上已经足够用了,但是在科研领域,尤其是研究光的性质上,战斗力着实一般。终于,在 1917 年,另一种发光方式浮出水面,那就是爱因斯坦提出的受激辐射理论。

受激辐射。图片来源:****

受激辐射理论就是说,现在假设第一激发态上有一个电子,这时候有一个光子打过来,而这个光子的能量恰好等于第一激发态和基态的差距,那么这个时候,第一激发态上的电子就会在“受到**”的情况下完成自发辐射,放出一个“一毛一样”的光子。由于这个“**光子”的存在,我们就称这个过程为受激辐射。如果在足够多的高能级电子中,这个过程会一直延续下去,最终形成一大群被“**”的光子,我们将这个过程称为光放大过程,最重要的是,这些光子的相位和频率是完全一样的。就像是一支整齐划一的部队,和上面“挤地铁”的自发辐射完全不一样。

03

造一台激光器总共分几步?

第一步,粒子数反转。有了受激辐射理论之后,人们就在想,怎么才能利用这个理论,造一个能发出整齐划一的光的光源呢?可能会有读者说,拿光照过去不就行了吗?有什么难的呢?有这样疑问的读者要注意前面提到的“足够多”这三个字,而且不要忘了我们的受激吸收现象。如果高能级电子不够多,受激辐射的次数少于受激吸收的次数,这时候一束光打过来,并不会发射光放大,而是会被基态电子受激吸收,导致光损耗。

实际上,在自然情况下,基态电子数量要远远大于激发态电子,以室温为例,一个二能级**(也就是只有基态和第一激发态的能级**)基态电子数量大概是激发态电子数量的 10 的 170 次方倍!所以要想利用受激辐射原理制造一台光源,首先要解决的问题就是使高能级的粒子数大于低能级的粒子数,也就是实现粒子数反转。怎么实现粒子数反转呢?基本的思路就是抽运,就像水泵一样,把基态的粒子抽到高能态去。说起来容易,做起来难。

水泵抽运粒子。图片来源:****

第二步,造一台前身。

1951 年,美国物理学家汤斯想到了如何在氨分子中实现粒子数反转。

氨分子是二能级**,在正常情况下是不可能实现粒子数反转的,因为受激吸收和受激辐射的概率是相同的,同时还有自发辐射存在,这就导致高能级的粒子数一定会少于基态粒子数。

汤斯的办法非常巧妙,他利用磁场将基态和激发态的氨分子区分开来,单单挑出激发态的氨分子放到微波谐振腔里,在这个谐振腔里实现了粒子数反转。

三年之后,利用这个想法,汤斯造出了第一台“MASER”。啥是 MASER 呢?MASER的全称为Microwave Amplification by Stimulated Emission of Radiation,译为“利用受激辐射对微波进行放大”。激光LASER的全称为light Amplification by Stimulated Emission of Radiation,译为“利用受激辐射对光进行放大”。上文我们提到光是一种电磁波,微波则是另一种电磁波。电磁波可以按照频率的大小来进行分类,微波的频率在 300 MHz~300 GHz,而可见光频率则是在 3.9~7.5 乘以 10 的 14 次方 Hz 之间。从名字我们就能看出 MASER 和 LAZER 的不同,主要在于工作波段的不同,MASER 离 LASER 只有一步之遥了。

汤斯和第一台MASER。图片来源:****

第三步,补全激光三大件。

MASER 的问世解决了粒子数反转问题。短短三年时间,这项技术就突飞猛进,这时候大家都希望能够赶紧更进一步,把这个微波放大器变成光放大器,造出那个梦想中的光源,也就是激光。

至此我们已经能隐隐总结出组成激光器的三大部件了:一是需要能实现粒子数反转的物质,就像是氨分子,我们称之为增益介质;二是合适的抽运方法,我们称之为泵浦;三是上面提到汤斯用的谐振腔,至于谐振腔的作用我们后面再说。1958 年,汤斯和肖洛合作写了一篇理**章,第一次从理论上预言了激光的可行性。此时对汤斯来说,可谓万事俱备只欠东风!结果大家也都知道了,汤斯本以为自己是借风的周瑜,没想到却成了被风骗了的曹*。1960 年 5 月 16 日,梅曼另辟蹊径,捷足先登,制造出了人类历史上的第一台激光器。关于梅曼如何捷足先登的故事,大家有兴趣可以去了解一下,可谓一波三折非常精彩。不过我们这里还是把介绍重点放在他的红宝石激光器上。

红宝石激光器原理图。图片来源:****

这个激光器非常清晰地展示了激光器的三大部件,我们就不妨依次介绍。增益介质:梅曼选择的增益介质是红宝石,也就是掺铬的三氧化二铝。

三能级**示意图。图片来源:作者自制

这种增益介质是一种三能级**,这种三能级**实现粒子数反转的办法,就比之前的二能级**要简单许多了。红宝石的三能级**有一些特别之处,我们通过它的抽运过程就能理解它是如何实现粒子数反转的。首先通过合适的激励把基态粒子直接运上 E3 能级,而 E3 能级和 E2 能级之间存在无辐射跃迁过程,也就是 E3 上的粒子会很快通过碰撞跑到 E2 上,减少的能量变成热运动能量,而不是发光。此外,E2 态是亚稳态,就是 E3 能级上掉下来的粒子能在 E2 能级保持很长时间。这样相当于利用 E3 能级作为一个过渡,把基态的粒子运到了 E2 上,让这个过程一直进行下去,E2 的粒子数就会超过基态粒子数,实现粒子数反转。其实红宝石激光器的效率很低,只有 0.1%,这是受增益介质的**,因为三能级**需要很高的能量把基态粒子抽运到高能态去。此外,这个激光器的波长为 694.3nm 也是由这种增益介质决定的。随着激光的发展,增益介质的种类逐渐增多,包括气体、固体、液体、光纤、半导体等等,比如教室里常用的激光笔就是一种半导体激光器。总之,不管哪种增益介质,它都要有能实现粒子数反转的方法。泵浦:

第一台红宝石激光器的泵浦灯。图片来源:****梅曼的激光器最明显的特征,就是它的泵浦光源是一个螺旋形的氙气灯,螺旋形可以保证把红宝石棒放在灯管之间。此外这个灯还是使用脉冲光来抽运,也就是它发出的光不是连续的,而是一阵一阵的,这是梅曼最重要的设计,这样就避免了连续的高能量抽运光损坏晶体。谐振腔:

谐振腔示意图。图片来源:****

在红宝石棒的两端,梅曼放了两面镜子,并在右边的一面上挖了一个小洞,这样受激辐射发出的光就能在增益介质中来回穿梭,得以“**”更多的光子,达到一定强度后,激光就从小洞里射出。

04

激光到底有什么用?

梅曼发明激光后召开了一场新闻发布会,在那场新闻发布会上就有记者问出了这个问题,梅曼给出了 5 个方面的建议:

1.用来放大光,比如做高功率激光器的时候,都是用光放大器对比较弱的光进行放大;

2.可以用激光去研究物质;

3.用高功率激光光束做空间通讯;

4.用于增加通讯的信道数量(这就是后来出现的光纤通讯);

5.把光束聚焦,产生超高的光强,用于工业上切割或**材料,或是在医学上进行手术等等。

我们不得不佩服梅曼敏锐的科研嗅觉,他说的这些建议,日后一一应验。还记得受激辐射产生光子的特点吗?它们的频率和相位一致,而激光本质上就是对受激辐射光的放大,所以激光最重要的两个特点就是单色性好和能量高。这两个特点决定了激光的用途,这也是激光器发展的两个方向。

单色性好,就意味着激光频谱很窄,很容易表现出光作为波的特征,我们就可以用它来记录相位信息。

比如 1947 年英国物理学家丹尼斯·盖伯发明的全息照相技术,本质上就是利用光的相位来记录物体全方位的信息,使产生立体照相的效果。

全息照片不光能记录正面信息还能记录侧面信息。图片来源:****

直到激光发明之后,这种技术才有了实现的条件,并在 1971 年获得了诺贝尔物理学奖。

能量高这个就很好理解了,我们可以用激光来刻录光盘,来促成核聚变,来切割材料等等。我们甚至不光可以产生连续高能量的激光,还可以通过锁膜技术和啁啾放大技术,来获得能量高但是脉冲持续时间非常短的激光。

锁膜技术产生脉冲示意图。图片来源:****现在飞秒激光已经很普及了,这种激光单个脉冲的持续时间只有飞秒(10 的负 15 次方秒)量级。利用这种激光,我们就可以对物质进行精准打击,而不至于造成很大的**,比如近视眼修复手术,改变物质表面,增强它的防腐性能等等。

05

结语

2018 年,啁啾放大技术的发明者也获得了诺贝尔物理学奖,目前,光是与激光相关的诺贝尔物理学奖就有十几个。可以说,激光是20世纪以来人类最重大的发明之一。在国际光日,如果有人问你:你相信光吗?你就可以反问他一句:你相信激光吗?出品|科普我国作者|小小长光人 我国科学院长**学精密机械与物理研究所监制|我国科普博览

(科普我国)


相关股票:
相关概念: CRO

崛起的中科系,被改变的我国芯片产业格局

当前,以芯片为代表的信创产业逐步成为国家科技竞争力的重要标志。在国产CPU产业强势崛起的过程中,你首先想到的会是哪几企业?答案有很多,但“中科系”的提及率绝对很高。作为国家战略科技力量,“中科系”旗下

芯片战场丨芯片领域三箭齐发 英特尔跑步突围

21世纪经济报道记者倪雨晴 圣何塞报道在硅谷源泉之一的圣何塞,英特尔CEO帕特·基辛格(Pat Gelsinger)正在带领英特尔加速奔跑。当地时间9月19日,2023英特尔on技术创新大会于美国加利

OPPO重启芯片业务?国产芯片或需告别“单打独斗”

财联社9月19日讯(记者 唐植潇)近日有消息称,OPPO将会重启芯片业务,并且“有部分员工已经回流,加入到了车载业务之中”。记者就此事向OPPO方面进行核实,对方表示“不予置评”。特百惠(我国)数字与

600亿颗芯片!我国巨头正式宣布,美媒:**也没料到制裁这么快

我国芯片市场与美国依赖我国的集成电路市场一直以来都是一个巨大的市场,拥有庞大的需求和巨大的增长潜力。我国的电子消费市场一直在迅速增长,包括智能手机、电视、电脑和各种智能设备等,这些设备都需要高性能的芯

最新手机芯片天梯图:A17、华为麒麟9000S,排在什么位置?

近日,最火的两颗芯片分别是苹果的3nm芯片A17 Pro,虽然很多人吐槽它较上一代提升不明显,但论性能,可以碾压任何安卓芯片,甚至是领先2代的。另外一款芯片,则是华为麒麟9000S,当然,这颗芯片工艺

韩国芯片连续13个月暴跌,尹锡悦指责我国不采购,外媒:自食其果

据韩国媒体称,韩国的半导体出口额已经连续暴跌13个月了,比去年同比下降了28%左右。韩国政府急的焦头烂额。尹锡悦政府竟直接甩锅我国,话里话外都是指责,他认为韩国半导体卖不出竟是我国的原因,我国应该帮助

我国突破芯片瓶颈将影响全球秩序?美国很担心,指出我国关键弱点

我国在芯片半导体领域一直深受美国的**,通过贸易制裁的方式阻止高端芯片进入我国市场。这样的举措一度造成我国芯片领域发展断档,不过随着我国科技企业近几年的突破,目前我国已经在芯片制造方面取得了重大的成果

没有他,我国芯片发展至少要**十年?

前几天,华为一声不响的上线了mate60系列,带着麒麟芯片9000s强势回归,吸引了全世界的目光。而华为麒麟芯片**背后,我们不该忘记这位老人—张汝京。我国半导体之父,为回**造芯片,被开除**户籍,

陈清泰:未来汽车颠覆传统,50%以上的零部件体系面临重构

【有车以后 资讯】“未来汽车对传统汽车的颠覆性,使传统零部件体系的50%以上都面临重构。”12月16日,在全球智能汽车产业峰会(GIV2022)上,我国电动汽车百人会理事长陈清泰指出,智能汽车的价值链

「姿势」一辆汽车由多少个零件组成?保证你说不清...

投稿点这里汽车有多少个零件?其实这个问题并没有一个十分确切的标准答案...据估计,一般轿车约由1万多个不可拆解的**零部件组装而成。结构极其复杂的特制汽车,如F1赛车等,其**零部件的数量可达到2万个

全球最大的10家汽车零部件供应商 都是世界500强 无我国企业

【卡车之家 原创】美国《财富》**每年发布的世界500强排行榜,是以营业收入数据对全球企业作出排名的榜单。2017年“世界500强”榜单中,汽车制造商和零部件厂商共占据33席(除去大型工程车辆企业),

汽车零部件企业哪家强?除了博世**还有这些名字你一定耳熟能详

文:懂车帝原创 李德喆[懂车帝原创 行业]9月18日,由《我国汽车报》主办,罗兰贝格协办的2019汽车零部件“双百强”企业发布会在江苏南京举行。在两份榜单中,博世、**、电装位列2019全球汽车零部件

汽车零部件行业现状及产业链

行业现状(Reference:产业运行 | 2021年汽车工业经济运行情况)中汽协预测:2022年我国汽车销量达到2700万辆,新能源销量超过550万辆(Reference:乘用车市场信息联席会)以乘

全球十大汽车零部件供应商,核心技术都被他们垄断,自主遗憾缺席

提到电影,我们会想到张艺谋、冯小刚,而很少会想到幕后的制作人;提起流行乐,我们会想到周杰伦、萧敬腾,而很少会想到背后的作词人。台前台后,一幕之别,知名度往往相差甚远。车界又何尝不是如此,知名车企我们都

高清汽车各零部件构造图,看完你就是汽车专家!

2023世界移动通信大会即将举行,大批中企强势回归!

来源:环球时报 【环球时报记者 倪浩 陶震 环球时报驻德国特约记者 青木】经过3年疫情后,全球最具影响力的通信展今年有望再现往日盛况。2月27日至3月2日,由全球移动通信**协会(GSMA)主办的20

太空新赛道:6G时代的卫星通信,究竟是什么?

近日华为、苹果争相推出手机卫星通信功能,成为一大亮点,不少手机厂商也将目光投到卫星通信。放眼未来,手机直连卫星的卫星通信服务将是大势所趋,也是6G时代的重要标志。华为以“北斗三号”为依托,率先把“卫星

光纤#光纤通信

国内企业在光通信产品的参数测试过程中,通常使用国外的先进测试设备。然而,这些测试仪器之间往往是孤立存在的,需要手动调试仪器并通过旋钮、按钮和人眼观察波形或数据。这不仅*作繁琐易出错,而且测试效率低下。

龙头20cm涨停,7天股价翻倍!一文看懂卫星通信前世今生及产业链

卫星通信概念股华力创通今日再度强势拉升,截至发稿,该股股价20cm涨停,7个交易日累计涨幅近113%,现报23.52元续刷阶段新高,总市值155.9亿元。消息上,有媒体从供应链获悉,Mate 60 P

工信部:目前我国尚不具备实现网络层面的移动通信号码归属地变更的条件

针对网友提出的“电话号码归属地更改”建议,工信部近日给出了官方回复。此前,有网友在人民网留言板向工信部留言称,“现在电话都是实名制,电话号绑定的***及一些主流的软件较多,更换号码后造成一系列问题

AD
更多相关文章