数字与模拟可兼得:清华可重构计算团队发表数模混合AI芯片

2023-02-09 机器之心Pro

机器之心发布

来源:Thinker 人工智能芯片团队

清华大学微电子所

VLSI Symposia on Technology and Circuits(简称VLSI)是集成电路与微电子领域的**会议,与**SCC(国际固态电路会议)、IEDM(国际电子器件会议)并称微电子技术领域的“奥林匹克盛会”,是超大规模集成电路和半导体器件领域里最顶尖的国际会议之一,也是展现IC技术最新成果的橱窗。今年的 VLSI 不久之前在日本京都落幕。清华大学微电子所可重构计算团队在VLSI 2019上发表了题为“采用16个存内计算单元的高能效(5.1pJ/神经元)低延时(127.3us/推理)语音识别芯片”(A 5.1pJ/Neuron 127.3us/Inference RNN-based Speech Recognition Processor using 16 Computing-in-Memory SRAM macros in 65nm CMOS)的学术**。该**是北京清华大学、新竹清华大学和北京清微智能科技有限公司的合作成果,其中北京清华大学微电子所博士生郭瑞琦为本文第一作者,尹首一教授为本文通讯作者,**合作者还包括北京清华大学微电子所魏少军教授、刘雷波教授,新竹清华大学张孟凡教授等。

深度学习广泛用于各种人工智能任务中,传统的深度学习加速器侧重于面向数据流的计算架构优化。然而传统冯·诺依曼体系结构所带来的「存储墙」问题日益突显,计算单元与存储单元间的频繁数据搬移造成了大量的能耗。

存内计算(computing-in-memory,简称 CIM)技术是解决「存储墙」问题的有效途径,但存内计算只能支持向量内积等有限运算。为支持完整的 AI 应用,该团队基于可重构计算架构,融合存内计算技术,设计了数模混合计算芯片(代号 Thinker-IM),在语音识别应用中实现了极低能耗。

为了获得极低的能耗,在算法层面上使用二值化的循环神经网络(RNN)建立语音声学模型,从而降低了计算复杂度并节省了存储开销。图 1 展示了基于二值化 RNN 的语音识别**,包括前端信号处理、二值 RNN 声学模型处理以及译码输出。

图 1:基于二值 RNN 的语音识别**

在硬件设计层面为了打破传统的冯·诺依曼体系结构的存储墙瓶颈,设计了数模混合计算架构。其中数字部分实现了必要的语音信号处理,而通过模拟计算方式在 SRAM 中实现了同或(XNOR)计算*作,并构建了基于 SRAM 存内计算(SRAM-CIM)的 RNN 计算模块。

该芯片使用 16 个 SRAM-CIM 宏单元完成 RNN 计算任务,从而避免了存储单元与计算单元的大量数据搬移所产生的能耗。当使用 SRAM-CIM 计算单元构建一颗全功能的语音芯片时,存在以下三方面挑战,如图 2 所示。

图 2:基于存内计算的语音芯片的实现挑战

挑战一:需要设计融合多个 SRAM-CIM 单元的计算架构和数据流调度方案。一般情况下,单个 SRAM-CIM 无法存下 DNN 中的全部权重。因此需要多个 SRAM-CIM 单元协同计算,需要考虑如何组织它们的计算方式。

挑战二:需要针对复杂 AI 任务设计多比特输出 SRAM-CIM 单元。对于简单 AI 任务(如手写体识别),SRAM-CIM 单元 1 比特输出精度可以满足识别需求。但对于复杂的识别任务(如语音识别),SRAM-CIM 单元 1 比特输出就会导致 Partial Sum(部分和)的精度损失,影响最终识别精度。

挑战三:RNN 推理过程是一种时域上的迭代计算,其计算过程相当耗时。我们发现在二值 RNN 中的累加过程中存在一些冗余计算。见图 2(c),在累加过程中,如果中间数据足够大而超过剩余累加的最大值,将保证最终结果大于 0。此时剩余累加周期的计算就是冗余的,如能去除这些计算,将能够有效加速 RNN 计算。

Thinker-IM 架构如图 3 所示,主要包括语音信号处理部分和基于 CIM 的 RNN 计算引擎。芯片设计中三项关键技术分别针对性解决了上述三个问题。

图 3:Thinker-IM 芯片架构与计算数据流调度

关键技术 1:设计了数模混合架构并组织多 SRAM-CIM 单元计算方式,如图 3 所示。提出了「输出-权重」双稳定数据流架构,在计算时同时固定输出与权重,减少了数据的重复访问,其中权重被固定在 SRAM-CIM 单元中,部分和被固定在加法树中。

通过分割权重矩阵将 64 个输出神经元作为一组,进一步通过多周期累加得到最终输出。在每个周期,64 个输入被分为 16 组并转化为 SRAM 的字线激励,生成该组输出的部分和并对应在加法树中相加。

关键技术 2:设计了支持 XNOR *作、3 比特输出的 SRAM-CIM 单元,提出了算法和硬件协同的 SRAM-CIM 能耗优化方法。如图 4 所示,存储单元采用了分割双字线设计(WLL/WLR)。输入数据转化为字线激励,而二值权重被存于存储单元中。此时,位线(Bitline, 简称 BL)的读电流依赖于输入与权重的组合。

存储单元引起的位线的充电、放电电流将分别代表输入-权重-乘积(IWP)为 1、-1。当同时激活 4 条 WL 时,存储单元的读电流在 BL 上累加而代表 4 个 IWP 的累加。最终利用 TSC 和 VSA 单元实现了串行的 3 比特 BL 输出。

图 4:3-b SRAM-CIM 单元结构、波形示例与先前工作对比

在 SRAM-CIM 的存储单元中,充电电流代表 IWP=+1,而放电电流代表 IWP=-1。为了更好地区分 BL 电压值,设计放电电流远大于充电电流。因此存储单元产生 IWP=-1 时的能耗要远远小于 IWP=+1,非对称电流将产生 1.5 倍左右的功耗差。

因此,我们考虑在训练过程中调整 RNN 权重从而产生更多的 IWP=+1 的情况,故在训练的损失函数中引入了正则项修正,并设计了具有感知 CIM 能耗的权重训练流程,如图 5 所示。随着反向传播误差并最小化损失函数,IWP=+1 的比例提高,从而降低能耗。最终在保证精度需求的情况下,在三个测试数据集中平均降低了 10.0% 的能耗。

图 5:具有 CIM 能耗感知的权重调整训练流程

关键技术 3:批标准化(Batch normalization,简称 BN)与二值化的预测机制与处理单元设计。由于 BN 是线性变化,标准二值化是与 0 的阶跃比较,因此 BN 与二值化的融合可以转化为直接与另一个参数 VTH0 的比较,其中 VTH0 由 BN 参数决定。

预测过程分为两个阶段,其一是利用剩余累加的上下界****二值化结果。当中间结果超过或低于剩余累加值的上或下界时,将保证最终结果的正确性,因此我们称这阶段为精确预测,剩余累加值的上下界则组成了精确阈值。

深度学习的统计特性给 RNN 带来了出色的容错性,因此我们可以进一步放宽精确阈值,以一个更激进的阈值完成预测,此过程称为激进预测。

整体预测机制为:首先进行精确预测,如果在每轮精确预测的数量超过我们预先设定的一个参数 Nex 时,激活激进预测对剩余中间累加结果进行二值化。

图 6 展示了预测的流程和预测单元的设计。预测单元中包含 64 个预测通道,每个预测通道中使用累加器完成部分和的累加得到中间结果;使用比较器完成 BN 与二值化的融合*作;使用查找表的方式向比较器提供精确、激进阈值和 Nex 参数。最终在保证精度超过 90% 的情况下,在三个测试数据集中平均减少了 24.5% 的*作。

图 6:Batch normalization 与二值化的预测机制与预测单元设计

Thinker-IM 在 65nm CMOS 工艺下完成了流片,芯片面积为 6.2 mm2。在不同的电源电压和工作频率下,在每个神经元和每次推断的最低能耗分别为 5.1 pJ 和 3.36 uJ,每次推断的最低时延为 127.3 us,在能效和性能上都超过了之前工作。

分别在 Google Speech Commands, Hey snips, Smart home 三个语音数据集上对 Thinker-IM 进行测试,结果如图 7 所示。当不采取权重调整和预测机制时,在三个数据集上可以实现平均 92.3% 的精度。当分别采取上述两个优化方法后,可以在超过 90% 的识别精度下平均节省 10% 的能耗和 24.5% 的冗余*作。

图 9:芯片测试结果与工作对比表

Thinker 团队近年来基于可重构架构设计了 Thinker 系列人工智能计算芯片,相关成果相继发表在 VLSI Symposia、**CA、IEEE JSSC 等顶尖学术会议和期刊上,受到了学术界和工业界的广泛关注。此次该团队设计了数模混合、存算一体新架构,并针对语音识别场景,设计了采用存内计算的数模混合语音芯片 Thinker-IM,为人工智能计算芯片的架构演进开拓了新方向。

**:A 5.1pJ/Neuron 127.3us/Inference RNN-based Speech Recognition Processor using 16 Computing-in-Memory SRAM Macros in 65 nm CMOS




相关股票:

崛起的中科系,被改变的我国芯片产业格局

当前,以芯片为代表的信创产业逐步成为国家科技竞争力的重要标志。在国产CPU产业强势崛起的过程中,你首先想到的会是哪几企业?答案有很多,但“中科系”的提及率绝对很高。作为国家战略科技力量,“中科系”旗下

芯片战场丨芯片领域三箭齐发 英特尔跑步突围

21世纪经济报道记者倪雨晴 圣何塞报道在硅谷源泉之一的圣何塞,英特尔CEO帕特·基辛格(Pat Gelsinger)正在带领英特尔加速奔跑。当地时间9月19日,2023英特尔on技术创新大会于美国加利

OPPO重启芯片业务?国产芯片或需告别“单打独斗”

财联社9月19日讯(记者 唐植潇)近日有消息称,OPPO将会重启芯片业务,并且“有部分员工已经回流,加入到了车载业务之中”。记者就此事向OPPO方面进行核实,对方表示“不予置评”。特百惠(我国)数字与

600亿颗芯片!我国巨头正式宣布,美媒:**也没料到制裁这么快

我国芯片市场与美国依赖我国的集成电路市场一直以来都是一个巨大的市场,拥有庞大的需求和巨大的增长潜力。我国的电子消费市场一直在迅速增长,包括智能手机、电视、电脑和各种智能设备等,这些设备都需要高性能的芯

最新手机芯片天梯图:A17、华为麒麟9000S,排在什么位置?

近日,最火的两颗芯片分别是苹果的3nm芯片A17 Pro,虽然很多人吐槽它较上一代提升不明显,但论性能,可以碾压任何安卓芯片,甚至是领先2代的。另外一款芯片,则是华为麒麟9000S,当然,这颗芯片工艺

韩国芯片连续13个月暴跌,尹锡悦指责我国不采购,外媒:自食其果

据韩国媒体称,韩国的半导体出口额已经连续暴跌13个月了,比去年同比下降了28%左右。韩国政府急的焦头烂额。尹锡悦政府竟直接甩锅我国,话里话外都是指责,他认为韩国半导体卖不出竟是我国的原因,我国应该帮助

我国突破芯片瓶颈将影响全球秩序?美国很担心,指出我国关键弱点

我国在芯片半导体领域一直深受美国的**,通过贸易制裁的方式阻止高端芯片进入我国市场。这样的举措一度造成我国芯片领域发展断档,不过随着我国科技企业近几年的突破,目前我国已经在芯片制造方面取得了重大的成果

没有他,我国芯片发展至少要**十年?

前几天,华为一声不响的上线了mate60系列,带着麒麟芯片9000s强势回归,吸引了全世界的目光。而华为麒麟芯片**背后,我们不该忘记这位老人—张汝京。我国半导体之父,为回**造芯片,被开除**户籍,

陈清泰:未来汽车颠覆传统,50%以上的零部件体系面临重构

【有车以后 资讯】“未来汽车对传统汽车的颠覆性,使传统零部件体系的50%以上都面临重构。”12月16日,在全球智能汽车产业峰会(GIV2022)上,我国电动汽车百人会理事长陈清泰指出,智能汽车的价值链

「姿势」一辆汽车由多少个零件组成?保证你说不清...

投稿点这里汽车有多少个零件?其实这个问题并没有一个十分确切的标准答案...据估计,一般轿车约由1万多个不可拆解的**零部件组装而成。结构极其复杂的特制汽车,如F1赛车等,其**零部件的数量可达到2万个

全球最大的10家汽车零部件供应商 都是世界500强 无我国企业

【卡车之家 原创】美国《财富》**每年发布的世界500强排行榜,是以营业收入数据对全球企业作出排名的榜单。2017年“世界500强”榜单中,汽车制造商和零部件厂商共占据33席(除去大型工程车辆企业),

汽车零部件企业哪家强?除了博世**还有这些名字你一定耳熟能详

文:懂车帝原创 李德喆[懂车帝原创 行业]9月18日,由《我国汽车报》主办,罗兰贝格协办的2019汽车零部件“双百强”企业发布会在江苏南京举行。在两份榜单中,博世、**、电装位列2019全球汽车零部件

汽车零部件行业现状及产业链

行业现状(Reference:产业运行 | 2021年汽车工业经济运行情况)中汽协预测:2022年我国汽车销量达到2700万辆,新能源销量超过550万辆(Reference:乘用车市场信息联席会)以乘

全球十大汽车零部件供应商,核心技术都被他们垄断,自主遗憾缺席

提到电影,我们会想到张艺谋、冯小刚,而很少会想到幕后的制作人;提起流行乐,我们会想到周杰伦、萧敬腾,而很少会想到背后的作词人。台前台后,一幕之别,知名度往往相差甚远。车界又何尝不是如此,知名车企我们都

高清汽车各零部件构造图,看完你就是汽车专家!

2023世界移动通信大会即将举行,大批中企强势回归!

来源:环球时报 【环球时报记者 倪浩 陶震 环球时报驻德国特约记者 青木】经过3年疫情后,全球最具影响力的通信展今年有望再现往日盛况。2月27日至3月2日,由全球移动通信**协会(GSMA)主办的20

太空新赛道:6G时代的卫星通信,究竟是什么?

近日华为、苹果争相推出手机卫星通信功能,成为一大亮点,不少手机厂商也将目光投到卫星通信。放眼未来,手机直连卫星的卫星通信服务将是大势所趋,也是6G时代的重要标志。华为以“北斗三号”为依托,率先把“卫星

光纤#光纤通信

国内企业在光通信产品的参数测试过程中,通常使用国外的先进测试设备。然而,这些测试仪器之间往往是孤立存在的,需要手动调试仪器并通过旋钮、按钮和人眼观察波形或数据。这不仅*作繁琐易出错,而且测试效率低下。

龙头20cm涨停,7天股价翻倍!一文看懂卫星通信前世今生及产业链

卫星通信概念股华力创通今日再度强势拉升,截至发稿,该股股价20cm涨停,7个交易日累计涨幅近113%,现报23.52元续刷阶段新高,总市值155.9亿元。消息上,有媒体从供应链获悉,Mate 60 P

工信部:目前我国尚不具备实现网络层面的移动通信号码归属地变更的条件

针对网友提出的“电话号码归属地更改”建议,工信部近日给出了官方回复。此前,有网友在人民网留言板向工信部留言称,“现在电话都是实名制,电话号绑定的***及一些主流的软件较多,更换号码后造成一系列问题

AD
更多相关文章